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FOREWORD

This report was prepared by Dr. Anthony W. Fiore of the Aeromechanics

Division of the Flight Dynamics Laboratory (AFWAL/FIMG), Air Force Systems

Command, Wright-Patterson Air Force Base, Ohio. The research was con-

ducted under Work Unit Number 2307N424 entitled "Viscous and Interacting

Flow Fields about Flight Vehicles". This report contains the results of

an investigation undertaken to obtain skin friction coefficients at very

high Reynolds numbers in a supersonic boundary layer. The research was

conducted at a nominal Mach number of three for near adiabatic wall and

zero pressure gradient conditions. This particular effort concerns itself

with the measurements of surface shear stress from which the skin friction

coefficient was obtained. The original experiments were performed between

April 1974 and June 1978. They were conducted on the tunnel nozzle wall

at a nominal Mach number of three, in the range of momentum thickness

Reynolds numbers extending from 2 x l0 to approximately 50 x lO4.
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SECTION I

INTRODUCTION

With the advent of the world energy crisis, it is rapidly becoming

necessary to find methods for decreasing the total drag of flight vehicles

in order to either decrease the fuel consumption for a given flight range

or to increase the range for a prescribed fuel load. In supersonic flight

approximately twenty percent of the total drag consists of skin friction

drag. Because of its importance, it becomes necessary to obtain a more

accurate estimate of this portion of the total drag. To date the only

skin friction data available at very high Reynolds numbers are the few

point: of Mou,-e and Harkness. l ) The purpose of this investigation was

to make measurements of the supersonic skin friction coefficients over a

large range of Reynolds numbers corresponding to those encountered by

future very large flight vehicles or vehicles designed to fly at low

altitudes.

Research was carried out on the contoured nozzle wall of the Flight

Dynamics Laboratory's high Reynolds number wind tunnel. Surface shear

stress measurements, leading to local skin friction coefficients, were

made at a nominal Mach number of three over the momentum thickness
*4 4

Reynolds number range extending from 2 x 10 to 50 x 10

This corresponds to a length Reynolds number, based on the assumption

that transition occurs at the tunnel throat, ranging from 107 to approxi-

mately 109.

The surface shear stresses presented in this report were measured

with a balance, measurements were also made with a Preston tube. The

skin friction coefficient was also calculated using the Von Karman integral

method. These experiments were conducted at near adiabatic wall

conditions in the absence of a pressure gradient.

S-.
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SECTION II

EXPERIMENTAL APPARATUS

1. THE WIND TUNNEL

The Flight Dynamics Laboratory's Mach Three High Reynolds Number

Wind Tunnel is a blowdown facility with an 8.2 x 8 inch closed test section

whose upper and lower walls are contoured. It operates at stagnation

pressures of 50 to 600 psia. Since the facility does not have a temperature

control system, the stagnation temperature is slightly below ambient tem-

perature resulting from the Joule-Thompson effect. At these conditions the

facility is capable of operation in the range of freestream unit Reynolds

number extending from 107 to approximately 1O8 per foot. It is designed to

run continuously for a maximum period of 10 minutes. Run duration during

this investigation averaged about 30 seconds. Further details on operating

procedures and calibration of this wind tunnel are available in Reference 2.

2. INSTRUMENTATION

a. Surface Shear Stress Balance and the Balance Retraction Mechanism

The surface shear stress was measured directly with a floating

element balance shown in Figure 1. It was manufactured by the Kistler

Instrumentation Company. It is a self-sealed unit with a flat surface

permitting flush mounting in the tunnel wall. The floating element is

0.37 inches in diameter and has a peripheral gap of 0.003 inches. The

balance is self-nulling to the center position and is statically balanced

about all three axis.

Prior to installation in the tunnel, the balance was calibrated by

applying known weights. Before and after each run the calibration was

constantly checked with a self-calibration coil contained within the

balance housing. The readout and electronic calibration control is also

shown in Figure 1.

2



AFFDL-TR 79-3136

Primary concern was the possible destruction of the balance when

exposed to tunnel starting-and-stopping-loads encountered when the tunnel

shock wave passes over the balance's floating element. In order to protect

the balance from failure, the injection system shown in Figure 2 was

developed. Prior to tunnel operation, the balance is retracted within

the housing, whose environment is at ambient conditions. The shutter is

closed and pressure is placed against it with a pneumatic cylinder per-

mitting the balance to be sealed within its housing. The housing unit

is then evacuated to the anticipated freestream static pressure. With

the balance protected in this manner, the tunnel is started. Once the

starting shock has passed the probing station and the proper freestream

test conditions have been established, the pneumatic pressure is released.

The shutter automatically lifts and rotates to the open position exposing

the balance to the test environment.

It is then lowered into position flush with the tunnel surface and

the wall shear stress is measured. The balance is then retracted into

the housing and the shutter is closed. The housing unit is once again

returned to ambient conditions and the tunnel is shut down. The injection

system is fully automatic and was designed so the injection (or retraction)

cycle can be completed in approximately five seconds.

b. The Preston Tubes

Two Preston tubes and their related wall static pressure and

temperature instrumentation were used to provide a second iwethod for

* measuring the wall shear stress. The general arrangement of these tubes

is shown in Figure 2 while the detailed design is shown in Figure 3.

They consisted of cylindrical pitot pressure tubes placed tangent to the

surface. They were constructed from #304 annealed stainless steel tubing

with outside and inside diameters of 0.062 and 0.0472 inches respectively.

The streamwise length of these pitot tubes was 0.125 inches long. Pro-

vided the Preston tubes have been properly calibrated, the local surface

shear stress is obtained from the measurements of wall static pressure,

K wall temperature, and the Preston tube total pressure (References 3, 4,

and 5). The Preston tube outside diameter to boundary layer thickness

Li 3
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ratio varied from 0.041 to approximately 0.124 depending upon the local

Reynolds number.

A brief error analysis of the skin friction coefficients obtained

by both the balance technique and the Preston tube method are presented

in Appendix B of this report.

4
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SECTION III

TEST PROCEDURE

This investigation was conducted at a nominal Mach number of three

and at momentum thickness Reynolds numbers varying from 2 x 104 to 50 x 1O
4

for near adiabatic wall and zero pressure gradient conditions. The

Reynolds number was changed by two methods; namely, by changing the tunnel

reservoir pressure from 50 psia to approximately 560 psia for a given

probing station and by testing at eight different longitudinal stations

for a constant tunnel reservoir pressure. The eight station locations

are shown in Figure 4.

The tunnel was operated manually rather than in the automatic mode.

This operational procedure permitted more time for starting load adjustment

as compared to an impulsive tunnel start common to the automatic mode.

All the data was recorded as a function of time on a multi-channel oscillo-

graph. The recorded data were the tunnel reservoir pressure and temperature,

wall static pressure, wall temperature, the Preston tube total pressure,

and the surface shear stress measured with the balance. The instantaneous

values of these parameters were used in the data reduction process.

Iii
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SECTION IV

DATA REDUCTION

The data reduction procedure described in the following paragraphs

involves only the calculations necessary to convert the experimental

measurements to a form consistent with boundary layer standard parameters

such as skin friction coefficients, momentum thickness Reynolds numbers,

and other various parameters used in the different theories.

Since the boundary layer is assumed to be a constant pressure

boundary layer, the edge Mach number is calculated from the energy

equation:

Me =y 2 P(1)

The edge temperature, density, and velocity are computed from:

T To/(l + y l M 2) (2)

e 0 2 e

Pe 144 R- (3)
~e

and

U Me ryRT(4
e--e (4)

The viscosity at the edge of the boundary layer was calculated

from Keyes's 13 ) equation written in the form:
it

e= 2.32 x 10- 8 IT- + 220 (5)

T Te (10 e)

where the edge temperature, Te, was obtained from Equation 2. The unit

Reynolds number was calculated from the basic definition:

e R e pUe
e e (6)

6e

k-.t6
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while the length and momentum thickness Reynolds numbers are obtained

from:
R
(R R (L) (7)Rex = 9 (12

x

and
R

Ree ( -) ( 2) (8)

From nozzle boundary layer measurements made at conditions of M=3

and near adiabatic wall conditions Fiore (7 ) found that the momentum

thickness in Equation 8 can be calculated from the empirical expression:

1.1109

=4.5133 x 10-4 Me (9)
x- 0.0507

Re
x

The skin friction coefficient obtained with the balance was calcu-

lated from the measured surface shear stress and the dynamic pressure at

the edge of the boundary layer as follows:

(C)g Tw (F/A) (10)f qe 2
I_ P Mg2 e 2

An empirical relationship was required to reduce the Preston tube

measurements to Cf values. In this experiment, the Sommer and Short (8 )

reference temperature method was used, this relationship is:

T* = Pe = (0.55 + 0.035 M 2 + 0.45 -) (11)
T Te T e

from which the quantity T* was obtained.

7
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The density corresponding to this reference temperature simply

becomes:
PW

p* = 144 (12)

while the corresponding viscosity is:

= 2.32 x 1o8 + 4 9/T* (13)
i T* (10

The Preston tube Reynolds number in the reference temperature form

is simply:

p* Ue d
R* e (14)

ed 12 11

where "d" is the Preston tube outside diameter in inches. The Preston

tube Mach number, M , was calculated by iterating the Rayleigh pitotP
formula: Y 1-

y-1 1 Y-l

(Y+l) (15)
PW =[ Y±2 p 2Y M p 2 - (Y-1)

* where P is the measured Preston tube total pressure and P is the
t w

corresponding wall static pressure.

The skin friction coefficient was calculated usin 9 the R.M.S. value

of three empirical equations. They are the Yanta form?4)

1.710.0736 (Mp/Me)

(Cf) 0 0.144 (16)

[!e R* e]

8D
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the Hopkins and Keener expression (3) 1 .75

(Cf)HK = 0.0522 (e)l 0.125 (17)

R*ed]

and Allen's original form taken from Reference 5 as

(Cf _) ed (a log 2F + b log F1(C f)A  ='' I I ! 18)

1,')e R d

where a = 0.01659, b = 0.7665, and c = 0.4681 with

R U ed (19)
ed  12 le

and

e  + E-1 Me
F M R- 1  (20)! 1 - \ el Rd I 21

2 p

Since Equations 16, 17, and 18 resulted in skin friction coefficients

very nearly the same, the R.M.S. value

(Cf)p C ) + (C (C (21)

was used. A few representative values have been calculated using

Equations 16, 17, 18 and 21 and are tabulated in Table 2. The corre-

sponding Van Driest (Reference 11 and 14) skin friction coefficient and

the percent difference between Equation 21 and the Van Driest theory(14)

are also included. Based on these results, it would appear that the use

1 t( of Equation 21 is justified.

9
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The Von Karman integral method was the third method used to calculate

the skin friction coefficient, It was introduced primarily as a check on

the values measured with the balance and the Preston tube. Since the Von

Karman integral method makes use of the boundary layer history, it becomes

necessary to find an expression for each term in the Von Karman integral

equation (see Equation 22) as a function of the longitudinal distance "x'.

dM 1
e I

, Me  dx

(CfK !L 2 + (2 + - e (22)"f VK -Ldo e~ (2Md;(2
2 e[ (7)

The empirical equations formulated by Fiore were used in this

calculation, these expressions are only valid for zero pressure gradient

at near adiabatic wall conditions and for a nominal Mach number of three,

they are:

1.11091
do 4.28442 x l10 4  Me -2.0596 x 1 (
dx 0.0507 xl.e0-

R 
ex

0.7992, * Me
6* 7.1496 0.0518 (24)

Re x

and

Me = -0.00176X + 3.0282 (25)

The skin friction coefficients calculated using Equations 10, 21,
and 22 are presented in both tabular and graphical form in this report.

The skin friction coefficients obtained by all three methods are

compared with one another as well as with various theories and are analyzed

in the next section. The detailed equations for the theories of Van

Driest (References 11 and 14) and Wilson(l0) along with the semi-empirical

method of Spalding-Chi (References 15 and 16) are presented in Appendix A

10
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of this report. Shang's code is not presented because of its complexity,

however it is described in Reference 12.

)- 1
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SECTION V

TEST RESULTS

1. BALANCE MEASUREMENTS

The skin friction coefficients obtained by direct measurements with

a balance are presented as a plot of Cf versus R in Figure 5 and Cf
ef

versus Re in Figure 6. In both cases they are compared with the measure-

(9) (1)
ments of Matting et al., and those of Moore and Harkness . They are

n (1 ) T m u )also compared with the theories of Wilson I , Van Driest( l4 , Spalding-Chi( 1 5 )"  , and the calculations of Shang et al. (12). The measurements agree

with Matting's data in the range of momentum thickness Reynolds numbers
4 4 4extending from 2 x 10 to 5 x lO4. As Re increases from 5 x 10 to

approximately 25 x 10 the new measurements scatter about the two points

of Moore and Harkness by approximately ±10%. For momentum thickness

Reynolds numbers greater than 25 x 10, the measurements appear to be

equal to and slightly greater than the data of Moore and Harkness.

When the measurements are compared with the previously mentioned

theories, the agreement between them is good. As shown in Figure 5, the

skin friction measurements throughout the Reynolds number range of this

investigation agree within ±15% of the Wilson, Van Driest, and the

Spalding-Chi theories as well as Shang's code.

From Figure 5 we note that in the range 2 x 10
4 < Re  < 35 x l0

4

the present skin friction measurements and those of Moore and Harkness

are in agreement with each other; however, both are slightly greater than

the theories shown. For Re > 35 x lO4, all the theories tend to under-

estimate the measured skin friction coefficients by approximately 8 to

15%, depending upon the particular theory used. (See Figure 7 through 10.)

12
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A least square fit to the measurements shown in Figures 5 and 6

resulted in the following empirical expression for the skin friction

coefficient

C 4.435 x 10- 3 (6
Cf - 0.1244 (26)

eB

and

11.566 x l0
f =  0.139 0.118 (27)

Me  Re
x

Equation 26 is valid in the range of Reynolds numbers 2 x 104 <

Re6 < 50 x 10 while Equation 27 is valid in the corresponding range of

2 x lO7 < Re < 1.5 x l09. Both Equations 26 and 27 are restricted to
x

a near adiabatic wall with zero pressure gradient, and a nominal Mach

number of three.

2. PRESTON TUBE MEASUREMENTS

The skin friction coefficient, obtained with a Preston tube, are

presented in Figures 11 and 12 as a function of the momentum thickness

and length Reynolds number respectively. In both these figures, the

Preston tube data are compared with the experimental measurements of

Matting et al.(9), and Moore-Harkness (  . They are also compared with
the theories of Wilson() Spalding-Chi 5  Van Driest(14)

et al. (2). Figures 11 and 12 indicate that the skin friction coefficients

obtained in this manner are slightly below both the Matting and the

Moore-Harkness results. In the Reynolds number range extending from

R = 2 x 104 to approximately R = 30 x 104 all the theories shown in

Figure 11 overpredict the measured skin friction coefficients; however,

they agree very well with all the theories in the higher Reynolds number

range of 30 x 10 < Ree < 50 x l0.

13
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The percent difference between the Preston tube skin friction

measurements and those calculated from the theories of Van Driest,

Spalding-Chi, Wilson and Shang are shown in Figures 13 through 16

respectively. The variation in the measured skin friction coefficient

with respect to the Van Driest theory is shown in Figure 13. The maximum

difference occurs at R = 3 x 10 4, where the skin friction coefficient
ee

varies from 4% higher to 20% lower than the Van Driest theory. As the

momentum Reynolds number is increased, the percent difference between

the Preston tube measurements and the Van Driest theory decreases signi-

ficantly. In the Reynolds number range given as 30 x l04 < R < 50 x 104

- e0 -

the measured skin friction coefficient is about four percent lower than

the Van Driest theory.

Figure 14 shows the variation between the Preston tube skin friction

coefficient and that calculated from the Spalding-Chi theory as a function

of the momentum thickness Reynolds number. The percent variation between

the measurements and theory as a function of R is similar to that showne0

in Figure 13, i.e., the percent difference is highest it the lower Reynolds

numbers and decreases with increasing Reynolds number. The Spalding-Chi

theory overpredicts the measurements by about an average of 8% at Re =

4 x 10 ; however, as the momentum thickness Reynolds number is increased

to 50 x 10 4, the Spalding-Chi theory overpredicts the measurements by

approximately two percent.

The percent difference between the Preston tube skin friction

coefficient and those calculated from Wilson's theory are presented in

Figure 15. Wilson's theory overpredicts the measurements by an average

of approximately 8%. The scatter in the data changes significantly over

the total range of Reynolds numbers. As seen in Figure 15 the maximum

scatter occurs in the range 2 x 10and it decreases
as the Reynolds number is increased.

The minimum scatter occurs in the Reynolds number range given as

25 x 10 < R < 50 x 10.

14
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The corresponding difference between (Cf)p and those calculated by

Shang are shown in Figure 16. At a Reynolds number of 3 x lO the scatter

is such that (Cf)p varies from 4% greater to 14% smaller than Shang's

theory. As the Reynolds number is increased this difference remains

nearly constant; and the skin friction measurements are about two percent
44lower than the theory in the Reynolds number range 25 x 10 < Re < 50 x lO.

3. VON KARMAN INTEGRAL RESULTS

The skin friction coefficients obtained from the Von Karman integral

method are plotted versus the momentum thickness and length Reynolds

number in Figures 17 and 18 respectively. The skin friction coefficients

in the momentum Reynolds number range extending from R = 2 x lO4 to

R lO5 fall well below the measurements of Matting as well as the foure6

theories shown in Figure 17. This is reflected in Figures 19 through 22

where the percent difference between the Von Karman skin friction coefficient

and the various theories are presented. In each case the Von Karman

integral method yields skin friction values which are considerably less

than the various theories. For example, the Von Karman skin friction

coefficients are from 2% to 18% less than those predicted by the four

theories shown in Figures 19 through 22.

As the momentum thickness Reynolds number is increased from 105 to
4

50 x 10 , the Von Karman integral method yields a near constant value of

(Cf)VK. Although the agreement between (Cf)VK, the experimental measure-

ments, and the four theories are reasonably good, it is not completely

correct since the skin friction coefficient should continuously decrease

with increasing R rather than remain constant. The cause is due to the
: ee

fact that each term in Equation 22 is not known with the desired degree

of accuracy in order to insure a monotonic decrease in (Cf)VK with in-

creasing R e. It should be noted, however, that an increase in the

momentum thickness Reynolds number beyond 105 produces values of (Cf)vK

which are larger than the previously mentioned four theories by about

four to six percent.

15
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SECTION VI

CONCLUSIONS

An investigation was conducted at a nominal Mach number of three

over the momentum thickness Reynolds number extending from 2 x 1O4 to
4approximately 50 x 10 . The purpose of this study was to make skin

friction measurements at very high Reynolds numbers for near adiabatic

wall conditions and zero pressure gradient. The skin friction coefficients

were obtained by three methods: they were measured directly with a balance,

with a Preston tube, and they were calculated using the Von Karman integral

method. The results of this investigation are summarized as follows:

(1) The skin friction coefficient obtained with a balance and the

Preston tubeaqree with the measurements of Matting et al . within 7%, and

are within 4% of the Moore and Harkness measurements.

(2) The theories of Van Driest, Spalding-Chi, Wilson, and Shang
4 4

appear to be reasonably good in the range 2 x lO < Re0 < 30 x 10 . Above

R = 30 x lO4, all four theories underpredict by approximately ten percent

the measured skin friction coefficients obtained in this investigation, as

well as those measured by Moore and Harkness.

(3) The Von Karman integral method with Fiore's empirical relations (7 )

yields skin friction coefficients which are too low compared to the measure-
4 5

ments of Matting in the Reynolds number range 2 x lO4 < Re < 10 . They are

also too low with references to the theories of Van Driest, Spalding-Chi,

Wilson, and Shang. For Reynolds number extending from R = 10 x lO4 to

approximately 50 x 10 , the Von Karman integral method results in a near

constant skin friction coefficient which violates the concept of decreasing

skin friction as the Reynolds number tends to infinitely larger values. The

method can be improved, provided each term in the Von Karman integral equation

can be expressed more accurately.
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TABLE II

SKIN FRICTION COEFFICIENTS USING DIFFERENT PRESTON TUBE EQUATIONS

I (Cf)p-lCf)

Re x 10-4  (Cf)y x 103 (Cf)HKx 103(Cf)A x lO3 (Cf)p x lO3 (Cf VDx 103 (Cf)VD VDxIO

2.3370 1.26530 1.29337 1.117686 1.24617 1.26037 -1.13
3.2761 1.117585 1.21583 1.111981 1.117116 1.118410 -1.09
4.1767 1.13721 1.19045 1.12423 1.15099 1.15568 -0.41
4.4155 1.10844 1.16309 1.10912 1.12717 1.14798 -1.81
4.9210 1.06721 1.08666 1.06298 1.07233 1.14501 0.09
5.6147 1.10622 1.13675 1.10919 1.11747 1.12156 0.62
6.3785 1.12831 1.14275 1.15336 1.14152 1.13328 0.80
8.1077 1.00834 1.02855 1.06906 1.03562 1.10666 0.83
8.3378 1.02386 1.04868 1.04636 1.03969 1.06006 -4.12
8.6417 1.01883 1.08143 1.10727 1.06982 1.06884 -0.36
9.3988 1.00443 1.03286 1.03528 1.02428 1.03786 -3.14

11.1763 0.96869 1.01196 1.05512 1.01254 1.03401 -3.77
11.1997 0.97336 1.04444 1.09129 1.03750 1.03106 -2.08
11.2632 0.97134 1.00668 1.05564 1.01181 1.04513 -2.84
13.1299 0.93319 0.98223 1.03838 0.98554 1.01437 -3.15
13.3083 0.94325 0.98085 1.03895 0.98847 1.02421 -1.92
13.2274 0.94313 1.01914 1.07774 1.01483 1.00674 -1.31
14.6503 0.92540 1.00462 1.07665 1.00412 0.99588 0.73
14.9314 0.90738 0.96041 1.02495 0.96544 0.99686 -3.19
16.6557 0.93799 0.98565 1.06190 0.99649 1.00000 -4.10
18.2692 0.85977 0.92090 0.98579 0.92359 0.95352 -3.37
20.3709 0.83579 0.89935 0.97500 0.90517 0.94065 -3.97
22.0493 0.85123 0.90342 0.98618 0.91530 0.95103 -3.49
22.1416 0.85067 0.90906 1.02249 0.)3015 0.96987 -0.35
48.9586 0.72639 0.80079 0.95610 0.83327 0.86233 -3.76

4
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APPENDIX A

THEORETICAL SKIN FRICTION COEFFICIENTS

The measured skin friction coefficients were compared with the
.(11) and (14) (10)

theoretical calculations of Van Driest , the work of Wilson

and the semi-empirical method of Spalding-Chi (6 ) and the Spalding-Chi

method presented by Komar (1 5)  The measurements were also compared with

Shang's et al.(12) computer code; however its details are not presented

because of its complex form. In Shang's code the skin friction coefficients

is basically the same asVan Driest's value.

The skin friction coefficient equations used in this report are

briefly outlined below. The Van Driest theory was taken from Referencel4

and is written slightly different than the form found in Van Driest's
(11)original paper . This particular form was chosen because it lends

itself more readily to hand calculations. It is reproduced here as it

appears in Reference 14, namely;

sin_1 - B1  1
2 2 B

sin+sin -
A

2 22 + 4 (A.1)
41A 1 ( r

(C)VD [(-)M 17.08 log Re) + 25.11 (log Re ) + 6.012

2 e e e -

where

T
A M r(' --f. (A.2)

e 2 Tw

B - A + T (A.3)

1 1 Tw

and

+ 220

e - + Tw( 1 09/Tw) R (A.4)W e + Te 0977,e)
e 220 e e
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Wilson's skin friction coefficient equation is given in Reference

lO as

2
(Cf)w = aA5
f~w  (in Re + S)2 (A.5)

where

0.55484 V17T sin-l (A.6)

8 = 1.54246 + in ( 1w) (A.7)

and

1=-- M2 I + 11 M (A.8)

The Spalding-Chi skin friction coefficient was calculated from

References 6 and 15. Both methods are semi-empirical and yield the same

results. The method outlined below is that of Komar (1 5 ) which consists

of a least squares curve fit to the tabulated data presented by Spalding-

Chi in Reference 6. Both these methods are difficult to use; Reference 6
because of the necessity to interpolate between the tabulated values and

Komar's closed form equation because of its numerical series form with

complex coefficients. Between the two methods, Komar's method is pre-
ferred; the skin friction coefficient becomes

(Cf) exp E g[ lnF.R (A.9)
Sc c j=l Re*Re

where
'I

a° T Tw /Te  (A.10)
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bo  1+ r ( ) Me2 - T (A-11)
Te

c = -r (17i) Me2  (A.12)
2 2

S s  - 2C  b

0 0

I _ ( sin-l'
SFc 2  - -i (A.13)

! 4 c bI o " 4 a o C o

and
(Taw/Te)0. 772

F (Taw /Tel472 (A.14)
Re (T w/T) e .7

The coefficients in Equation A.9 were determined by Komar (1 5) and are

tabulated below.

Jgj

1 -8.1597880

2 3.8659884

3 -0.86304234

4 -0.22725503

5 0.14047119

6 -0.029148057

7 0.0032405621

8 -2.0526747 x 10- 4

9 6.9816431 x 10-6

10 -9.8965784 x l0
8

In each of the above three methods the assumptions are that we have

'1 an adiabatic wall and since its for a flat plate, the pressure gradient

is zero. All methods take into account the compressibility effect.
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APPENDIX B

ERROR ANALYSIS IN SKIN FRICTION MEASUREMENTS

An error analysis in the measuring methods used in obtaining the

skin friction coefficients will be presented. The original measurements

were made with a shear stress balance. This balance was calibrated

statically in the range of 0 to 6.94 grams by both the contractor and

the FlightDynamics Laboratory. The calibration is of the form

F d F (B.1)

where dF/dE is the balance sensitivity in gm/volt, F is the null output

in volts, and E is the balance linearity in percent of full scale output.
The procedure was to apply a known weight (Fi) in grams on the floating

element of the balance and recording its electrical output (Ei) in volts.

The method of least squares was then applied to determine both balance

sensitivity and its null output. The mathematical expressions used for

this purpose were

n n n
n z E. F. - Z Ei  Z Fi

dF i =1 I= i=l B2
dE n 2 n 2

n z E i E E)
i=l1 il 1

and

n n n n
E 2 Fi- E z E. F.

il il il i( 8lF0 n n 2 (B.3)
n t E2 - ( . E.)Iii=l 1 i=l1

.52
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where "N" is equal to the total number of points recorded during the

calibration process. The balance linearity is defined as

F - F.C = FF.S.O" x 100 (B.4)

where F is obtained from Equation B.1, Fi is the corresponding calibration

weight in grams, and FF.S.o. is the balance full scale output, i.e., 6.94

grams.

At the Flight Dynamics Laboratory the balance was calibrated in both

the vertical and horizontal position since it was to be employed in both

modes.

1:5

I
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These calibrations are tabulated below:

AFFDL r.m.s.

Contractor 
of

Three

F. (Vertical) (Vertical) (Horizontal)Calibration

Ei  E E Ei

gm volts volts volts volts

0 0 0 0 0
.001 .0007 --- .0007
.002 .0014 --- .0014
.005 .0036 --- .0036
.010 .0072 --- .0072
.020 .0145 --- .0145
.050 .0361 --- .0361
.060 ... - - -

.069 ---...

.100 •0723 .0723

.200 .1444 --- .1444

.500 .3612 .3600 .3556 .3589

.600 ............

.694 ---.---.---.---
1.00 .7226 .7218 .7239 .7228
1.50 --- 1.0828 1.0595 1.0712
2.00 1.4453 1.4453 1.4440 1.4449
2.50 --- 1.8058 1.7995 1.8027
3.00 --- 2.1673 2.1628 2.1651
3.50 --- 2.5273 2.5248 2.5261
4.00 --- 2.8918 2.8761 2.8840
4.50 --- 3.2513 3.2326 3.2420
5.00 3.6131 3.6123 3.5946 3.6067
5.50 --- 3.9723 3.9616 3.9670
6.00 4.3355 4.3355
6.94 5.0149 ------ 5.0149

The results of the calibrations are presented in the following table

and indicate that the balance has excellent calibration repeatability with

linearities well within one half of one percent of full scale output.

54



AFFDL-TR-79-3136

dF
dE F C

0

Organization Sensitivit, Null Output (Linearity)

gm/volt gm % of F.S.O.

Contractor (Vertical) 1.3839 2.429xi0 "5  
- .003

AFFDL (Vertical) 1.3840 7.1444xi 0-4  .040

AFFDL (Horizontal) 1.3886 3.4672xi0 3  
- .360

r.m.s. Average 1.3852 l.5148xi0 3  .210

The percent difference resulting from various calibration have been

calculated. These calculations are in percent of full scale output and

are arbitrarily referred to the contractors calibration as a standard.

They are presented in the following table for assumed values of the balance

output.

* DIFFERENCE IN PERCENT OF FULL SCALE
OUTPUT REFERRED TO CONTRACTOR CALl-

* ____BRATION

E AFFDL AFFDL r.m.s.

gm (Vertical) Horizontal) Average

4 0 .010 .003 .002
1 .012 .072 .020

2 .013 .140 .055

3 .015 .208 .057
1 4 .016 .276 .075

5 .018 .344 .094

* 6 .019 .412 .112
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In general, the difference is always less than one percent of full

scale, with the greatest difference occurring at near full scale operation.

The maximum difference occurs when the balance is used in its horizontal

position. For E = 6 volts this difference is slightly below one half of

one percent of full scale output.

An error analysis of the Preston tube skin friction coefficient by

differentiation of the Preston tube equation can become tedious; therefore,

the analysis presented in this report will be numerical in nature. Since

all Preston tube equations are somewhat similar, the analysis will be

carried out for the form given by Equationl7. The sample calculations

will be referred to the measurement taken at station 1 where X = 28.68

inches for an edge Mach number of 2.90 and a momentum thickness Reynolds
4

number of 2.0675 x 10 . The corresponding Preston tube skin friction

coefficient was 0.0012535 for the following test condition.

p0  T T P P
0o w w p

psia OR OR psia psia

82.57 516.32 500.95 2.62 8.77

53

Assuming that all instruments result in correct data except the

wall static pressure (pw) transducer which now is 5% larger than 2.62 psia

or 2.75 psia. Then a step-by-step calculation as described in Section IV

of this report produces a skin friction coefficient of 0.0012033 which is

4.01% less than the reference value of 0.0012535. Still another example

is to assume that the static (wall) pressure transducer is correct and

gives a reading of 2.62 psia while the Preston impact transducer reads

5% too high or 9.21 psia. This leads to Cf = 0.0011462 corresponding to
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a decrease of 8.56% in the skin friction coefficient. The results of

various calculations are summarized in the following table:

Percent Change

P p (Cf)HK

+5 0 -4.01

0 +5 -8.56

+5 +5 1.12

+5 -5 -9.19

According to the above table the greatest error in the skin friction

coefficient (for this case only) is -9.19% and is the result of a + 5%

error in the wall static pressure coupled with a - 5% error in the Preston

tube impact pressure reading.
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The following corrections are applicable to AFFDL-TR-79-3136, "Skin
\ Friction Measurements at a Mach Number of Three and Momentum Thickness

Reynolds Numbers Up to a Half Million," UNCLASSIFIED report, September
1980:

Page 47

0-- Change heading in column seven to read

VDx 100

Page 50

Change Equation A.6 to read

0.55484 le I

_ sin

.
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